Biochemical characterization of terbinafine-resistant Trichophyton rubrum isolates.

نویسندگان

  • Bertrand Favre
  • Mahmoud A Ghannoum
  • Neil S Ryder
چکیده

We investigated the biochemical basis for resistance in six sequential clinical isolates of Trichophyton rubrum, from the same patient, which exhibited high-level primary resistance to terbinafine. Cellular ergosterol biosynthesis was measured by incorporation of [14C]acetate, and microsomal squalene epoxidase was assayed by conversion of [3H]squalene to squalene epoxide and lanosterol. Direct comparison was made with a terbinafine-susceptible reference strain of T. rubrum in which squalene epoxidase was previously studied. Resistant isolates displayed normal cellular ergosterol biosynthesis, although slight accumulation of radiolabeled squalene suggested reduced squalene epoxidase activity. Ergosterol biosynthesis in the resistant isolates was only inhibited by terbinafine concentrations above 1 microg/ml (IC50 5 microg/ml). In the reference strain, ergosterol biosynthesis was eliminated by terbinafine at 0.03 microg/ml in accordance with historical data. There was no significant difference in sensitivity between the six resistant isolates. Squalene epoxidase from resistant strains was three orders of magnitude less sensitive than normal enzyme to terbinafine (IC50 of 30 micromol/l and 19 n mol/l respectively). The epoxidase in the resistant strains was also unresponsive to tolnaftate. Resistance to terbinafine in these T. rubrum isolates appears to be due to alterations in the squalene epoxidase gene or a factor essential for its activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological, biochemical, and molecular characterization of a new clinical Trichophyton rubrum isolate resistant to terbinafine.

We have characterized a new clinical strain of Trichophyton rubrum highly resistant to terbinafine but exhibiting normal susceptibility to drugs with other mechanisms of action. Resistance to terbinafine in this strain is caused by a missense mutation in the squalene epoxidase gene leading to the amino acid substitution F397L.

متن کامل

Amino acid substitution in Trichophyton rubrum squalene epoxidase associated with resistance to terbinafine.

There has only been one clinically confirmed case of terbinafine resistance in dermatophytes, where six sequential Trichophyton rubrum isolates from the same patient were found to be resistant to terbinafine and cross-resistant to other squalene epoxidase (SE) inhibitors. Microsomal SE activity from these resistant isolates was insensitive to terbinafine, suggesting a target-based mechanism of ...

متن کامل

Clinical Trichophyton rubrum strain exhibiting primary resistance to terbinafine.

The in vitro antifungal susceptibilities of six clinical Trichophyton rubrum isolates obtained sequentially from a single onychomycosis patient who failed oral terbinafine therapy (250 mg/day for 24 weeks) were determined by broth microdilution and macrodilution methodologies. Strain relatedness was examined by random amplified polymorphic DNA (RAPD) analyses. Data obtained from both broth micr...

متن کامل

In vitro antifungal drug susceptibilities of dermatophytes microconidia and arthroconidia.

OBJECTIVES Arthroconidia have been considered as the primary cause of infection by dermatophytes. However, the in vitro antifungal testing evaluates the responses mainly of microconidia or hyphae, and dermatophytes in vivo often produce arthroconidia, a cellular structure presumably more resistant to antifungals. The aim of this study was to compare the in vitro susceptibility of microconidia a...

متن کامل

Comparison of the in vitro activities of newer triazoles and established antifungal agents against Trichophyton rubrum.

One hundred eleven clinical Trichophyton rubrum isolates were tested against 7 antifungal agents. The geometric mean MICs of all isolates were, in increasing order: terbinafine, 0.03 mg/liter; voriconazole, 0.05 mg/liter; posaconazole, 0.11 mg/liter; isavuconazole, 0.13 mg/liter; itraconazole, 0.26 mg/liter; griseofulvin, 1.65 mg/liter; and fluconazole, 2.12 mg/liter.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical mycology

دوره 42 6  شماره 

صفحات  -

تاریخ انتشار 2004